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Simulation of the diffusion equation on a type-II quantum computer
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A lattice-gas algorithm for the one-dimensional diffusion equation is realized using radio frequency pulses in
a one-dimensional spin system. The model is a large array of quantum two-qubit nodes interconnected by the
nearest-neighbor classical communication channels. We present a quantum protocol for implementation of the
quantum collision operator and a method for initialization and reinitialization of quantum states. Numerical
simulations of the quantum-classical dynamics are in good agreement with the analytic solution for the diffu-
sion equation.
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I. INTRODUCTION

Recently a quantum computer of type II@1# has been pro-
posed to solve complex gas and fluid dynamics@2–4#. In a
simplest implementation, this type of a quantum compute
an array of a few-qubit elementary nodes that are organ
in the discrete lattice. The important feature of the type
quantum computer is that different nodes do not inter
quantum mechanically. The operation of the type-II quant
computer includes the sequential repetition of the three m
steps.

~1! Initialization of the quantum computer: creation of th
quantum-mechanical initial state that corresponds to the
tial probability distribution for a partial differential equatio
~PDE! to be solved.

~2! Application of the quantum unitary transformation th
acts on all nodes in parallel.

~3! Measurement: reading out the quantum states of
nodes. The results of the measurement are used to reiniti
~step I! the quantum computer in the state that correspond
the new probability distribution.

The type-II quantum computers have many attractive f
tures including the following:

~1! This computer can operate on a macroscopically la
number of microscopic nodes. Analogous simulations of
PDE on a digital computer would require an enormo
amount of memory and time.

~2! The identical~in time and space! and relatively simple
quantum logic operations are implemented on the whole
croscopic array of elementary nodes.

~3! The type-II quantum computer should not maintain t
quantum coherence for a long period of time, since the qu
tum logic operations are relatively simple, and each ti
after implementation of the quantum logic the quantu
states are collapsed by measurement procedure and rein
ized.

The disadvantage of the type-II quantum computer is t
it can be relatively slow, since each time step requires m
surement and reinitialization based on the results of the m
surement. As well, before reinitialization the system sho
relax to the ground state.

Simulations of the dynamics of different physical syste
1050-2947/2002/66~1!/012310~8!/$20.00 66 0123
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require different quantum logic. We consider in this paper
realization of one-dimensional~1D! diffusion equation in the
system of two-qubit nodes interconnected by the class
channels@5#. The word ‘‘classical channels’’ means that th
states of qubits can be shifted along the chain of the node
spite of the fact that these nodes do not interact quan
mechanically. Technically, classical communication betwe
the nodes can be realized by measurement of quantum s
of the nodes of the chain~or in an ensemble of the identica
chains! and reinitialization of the spin chain in the new sta
We present in this paper the quantum protocol that real
the quantum logic required to implement the simulation
1D diffusion equation.

The paper is organized as follows. The formal proced
for simulation of a 1D diffusion equation in the type-II qua
tum computer is discussed in Sec. II. In Sec. III we discus
form of the collision operator. The quantum dynamics o
single node that consists of two coupled qubits placed in
external magnetic field, is considered in Sec. IV. In Sec
we use the solution discussed in Sec. IV to build the proto
~the sequence of pulses! that allows us to initialize our sys
tem and to simulate the quantum logic in our computer. T
parameters required for simulations are analyzed in Sec.
In Sec. VII we show numerically that the quantum log
correctly simulates the diffusion equation. Some general
marks are presented in Sec. VIII.

II. TYPE-II QUANTUM COMPUTER FOR SIMULATION
A 1D DIFFUSION EQUATION

Our type-II quantum computer represents a 1D chain oL
nodes placed in an external magnetic field, as shown in
1. Each node consists of two coupled spins~qubits! that re-
main phase coherent for some short time. Different nodes
interconnected with each other by the classical commun
tion channels as indicated in Fig. 1 by dashed lines.

First, we derive the formal relation between the obse
ables for the quantum-mechanical model presented in Fi
and the probability distribution for the 1D diffusion equatio
The Hilbert space for one node consists of four basis sta
©2002 The American Physical Society10-1
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u0201&5u0&5S 0

0

0

1

D , u0211&5u1&5S 0

0

1

0

D ,

u1201&5u2&5S 0

1

0

0

D , u1211&5u3&5S 1

0

0

0

D . ~1!

The operators of the number of particles,n̂1 and n̂2, for
qubits, uq1& and uq2&, are represented by the following ma
trices,

n̂15S 1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

D , n̂25S 1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

D . ~2!

All nodes in our 1D chain are characterized by the coordin
x. The occupancy probability ofl th qubit at sitex at timet is
defined as

f l~x,t !5^c~x,t !un̂l uc~x,t !&, ~3!

wherel 51,2. The wave functionuc(x,t)& at each node with
the coordinatex can be expanded over the eigenstatesup&
@see Eq.~1!# of this node as

uc~x,t !&5 (
p50

3

Cp~x,t !up& exp~2 iEpt !, ~4!

whereEp is the energy of the stateup&, and we suppose tha
the Planck’s constant is\51. Since all nodes are identica
we do not indicate the dependences ofup& andEp on x. The
mass density at the node with the coordinatex at time t is
defined as the sum of the occupancy probabilities,

FIG. 1. A schematic illustration of the type-II quantum com
puter. Each node of the computer consists of two coupled quan
bits ~qubits! connected with each other.~These connections ar
shown by solid lines.! Only four nodes are shown. Different node
are interconnected by the classical communication channels
cated by dashed lines.
01231
te

r~x,t !5 f 1~x,t !1 f 2~x,t !

5uC1~x,t !u21uC3~x,t !u21uC2~x,t !u21uC3~x,t !u2,

~5!

where

f 1~x,t !5uC1~x,t !u21uC3~x,t !u2,

f 2~x,t !5uC2~x,t !u21uC3~x,t !u2. ~6!

If an appropriate sequence of quantum gate operat
and classical shift operations as described below is applie
the quantum computer, the functionr in Eq. ~5! evolves in
time as a solution of the diffusion equation@5#,

]r~x,t !

]t
5

D

2

]2r~x,t !

]x2 , ~7!

whereD is the diffusion constant.

Factorized quantum lattice-gas algorithm

The factorized quantum lattice-gas algorithm for the 1
diffusion equation can be implemented in the following thr
steps: a collision, a measurement, and a reinitializat
~shifting!. We assume that the initial state of a node with t
coordinatex is set in the formuq1(x,t0)& ^ uq2(x,t0)&, where
the symbol ^ represents the tensor product,uql(x,t)&
5Af l(x,t)u1&1A12 f l(x,t)u0&. @Here and in Eq.~10! below
we do not indicate the phases of the wave functions.#

Step 1. One applies a collision operatorÛ, simultaneously
to all nodes,

uc8~x,t !&5Ûuc~x,t !&. ~8!

The structure of the collision operator is discussed bel
This step accounts for the quantum part of the algorithm t
is accomplished in parallel fashion across all nodes of
array.

Step 2. One measures~reads out! all occupancy probabili-
ties,

f 18~x,t !5^c8~x,t !un̂1uc8~x,t !&,

f 28~x,t !5^c8~x,t !un̂2uc8~x,t !&. ~9!

In practice,f 1 and f 2 must be determined by either repeat
measurement of a single realization of the system or b
single measurement over a statistical ensemble of the
tems.

Step 3. One reinitializes~rewrites! the state of the quan
tum computer as a separable state where each qubit is s
follows:

uq1~x,t1T!&5Af 18~x2 l ,t !u1&1A12 f 18~x2 l ,t !u0&,

uq2~x,t1T!&5Af 28~x1 l ,t !u1&1A12 f 28~x1 l ,t !u0&,
~10!
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SIMULATION OF THE DIFFUSION EQUATION ON A . . . PHYSICAL REVIEW A66, 012310 ~2002!
for all x. Note that the state of the qubituq1& is shifted to its
neighboring node at the left, and the state of the qubituq2& is
shifted to its neighboring node to the right. This step requi
nearest-neighbor ‘‘classical’’ communication between all l
tice nodes.

III. COLLISION OPERATOR

The collision operatorU ‘‘mixes’’ the occupancy prob-
abilities,

f 185^cuÛ1n̂1Ûuc&5
1

2
~ f 11 f 2!,

f 285^cuÛ1n̂2Ûuc&5
1

2
~ f 11 f 2!, ~11!

so that the probability is conserved,

f 181 f 285 f 11 f 2 . ~12!

The collision operatorÛ can be written in the following
symmetric form@5#:

Û5S 1 0 0 0

0
1

A2
e2 ip/4

1

A2
eip/4 0

0
1

A2
eip/4

1

A2
e2 ip/4 0

0 0 0 1

D . ~13!

Then, direct calculation yields us the following formulas:

f 18~x,t !5uC3~x,t !u21
1

2
@ uC1~x,t !u21uC2~x,t !u2#

1
i

2
@C1* ~x,t !C22C2* ~x,t !C1~x,t !#,

f 28~x,t !5uC3~x,t !u21
1

2
@ uC1~x,t !u21uC2~x,t !u2#

2
i

2
@C1* ~x,t !C2~x,t !2C2* ~x,t !C1~x,t !#.

~14!

One can see that in order to satisfy Eq.~11!, where f 1(x,t)
and f 2(x,t) are defined by Eq.~6!, one should have

C1* ~x,t !C2~x,t !5C2* ~x,t !C1~x,t ! ~15!

In order to satisfy this condition,C1(x,t) andC2(x,t) must
be real or one of them should be zero, i.e.,C1(x,t)50 or
C2(x,t)50. One can see from Eq.~11! that the collision
operator can have a more general form,
01231
s
-

Û15eiFS eiF1 0 0 0

0
1

A2
e2 ip/4

1

A2
eip/4 0

0
1

A2
eip/4

1

A2
e2 ip/4 0

0 0 0 eiF2

D ,

~16!

whereF, F1, andF2 are arbitrary phases. In this case a
under the condition~15!, the relations~11! and ~14! do not
change.

If one of the coefficients,C1 or C2, is equal to zero before
the collision then Eq.~11! can be satisfied by the collisio
operator of a more general form,

Û25S eiF1 0 0 0

0
1

A2
eif1

1

A2
eif2 0

0
1

A2
eif3

1

A2
eif4 0

0 0 0 eiF2

D , ~17!

where f12f35f22f41p mod(2p) and f12f25f3

2f41p mod(2p), since the matrixÛ is unitary. These re-
lations for phases are automatically satisfied for any phys
quantum Hamiltonian system provided the corresponding
lations for the amplitudes are satisfied. In order to illustr
the action of the collision operatorÛ2, we chooseC2(x,t)
50 andC1(x,t)5” 0 and directly calculate the unitary tran
formation,

f 18~x,t !5^cuÛ2
1n̂1Û2uc&5uC3~x,t !u21

1

2
uC1~x,t !u2,

f 28~x,t !5^cuÛ2
1n̂2Û2uc&5uC3~x,t !u21

1

2
uC1~x,t !u2.

~18!

This equation has the same form as Eq.~14! with the substi-
tution C2(x,t)50. Note, however, that the evolution oper
tor ~17!, providing the transformation~11!, has a very gen-
eral form unlike that in Eq.~13!, which allows us to
implement the quantum protocol by the radio frequen
pulses with arbitrary initial phases of these pulses~see Sec.
IV below!.

As a result of mixing~11! the probabilities to find each o
the spins in the stateu1& become equal to each other,

f 18~x,t !5 f 28~x,t !

or

uC18~x,t !u21uC38~x,t !u25uC28~x,t !u21uC38~x,t !u25
1

2
r~x,t !,

~19!
0-3
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where r is defined in Eq.~5! and prime inCi8(x,t), i
50, . . . ,3indicates that the probability amplitudes are tak
after action of the collision operator. In the next step~step 3
in Sec. II A! the stateuq1(x,t)& of the first qubit shifts to the
left, and the stateuq2(x,t)& of the second qubit shifts to th
right,

r~x,t1T!5uC18~x1 l ,t !u21uC38~x1 l ,t !u21uC28~x2 l ,t !u2

1uC38~x2 l ,t !u2

5
1

2
@r~x1 l ,t !1r~x2 l ,t !#. ~20!

Finally, we obtain the finite-difference diffusion equatio
in the form,

r~x,t1T!2r~x,t !5
1

2
@r~x1 l ,t !22r~x,t !1r~x2 l ,t !#.

~21!

In the continuous limit, Eq.~21! is reduced to Eq.~7! with
the diffusion coefficientD5 l 2/T @5#.

IV. QUANTUM DYNAMICS FOR TWO-QUBIT QUANTUM
SYSTEM

In this section, we show how to initialize~and reinitialize!
the initial state of our system and how to implement t
collision operator. By the term ‘‘~re!initialization’’ we mean
that each node of our computer is excited to the quan
state that corresponds to a given profile,r(x,t) in Eq. ~5!.
All nodes are equivalent, hence for our purposes it is eno
to consider the quantum dynamics only for a single node

Each node consists of two qubits placed in a magn
field,

B~ t !5@b cos~nt1w!,2b sin~nt1w!,Bz#, ~22!

whereBz is a uniform permanent magnetic field oriented
the positivez direction, andb, n, andw are, respectively, the
amplitude, the frequency, and the initial phase of the cir
larly polarizedx-y plane magnetic field. This magnetic fie
has the form of rectangular pulses of the length~time dura-
tion! t. The one-node Hamiltonian of the spin chain in t
magnetic field is

H52v1I 1
z2v2I 2

z22JI1
zI 2

z2(
l 51

2

~V l /2!

3$I l
2exp@2 i ~nt1w!#1I l

1exp@ i ~nt1w!#%

5H01V~ t !, ~23!

where the indexl labels the spins at the node,J is the Ising
interaction constant,V l5g lb is the precession~Rabi! fre-
quency,v l5g lBz is the Larmor frequency,g l is the gyro-
magnetic ratio for thel th spin,I l

z is thez projection of thel th
spin, andI l

15I l
x1 i I l

y and I l
25I l

x2 i I l
y are the one-spin-flip

operators. Schematically the two-spin system is illustrate
Fig. 2. Below we write the solution for this system and use
01231
m

h

ic

-

in
t

in the following section for simulation of the diffusion equa
tion.

In the interaction representation the Schro¨dinger equation
for the coefficientsCp(t) in Eq. ~4! @hereCp(t) is Cp(x,t) at
fixed x# has the form@6#,

iĊp~ t !5 (
m850

3

Vpm8 exp@ i ~Ep2Em8!t

1 ir pm8~nt1w!#Cm8~ t !, ~24!

where r pm8561 for Ep.Em8 and Ep,Em8 , respectively.
Vpm852V l 8/2 for the statesup& and um8& connected by a
flip of l 8th spin, andVpm850 for all other states. Since th
Hamiltonian ~23! provides only one-spin-flip transitions
there are two nonzero terms in the right-hand side of
~24!, so that the stateum8& ~for which Vpm85” 0) is related to
the stateup& by the flip of only one spin. For example
Vpm852V1/2 for the transition between the stateup&
5u1201& with the energyEp5(1/2)(2v11v21J) @see Eq.
~23!# and the stateum8&5u1211& with the energyEp5(1/2)
3(v11v22J). In another example,Vpm850 for the transi-
tion between the statesup&5u1201& and um8&5u0211& since
these states are related to each other by a two-spin-flip t
sition.

When the differencedv5v12v0 between the Larmor
frequencies of the spins is large, and when the Rabi frequ
ciesV l are small,V l!J!dv, l 51,2, one can flip a par-
ticular spin~without flip of the other spin! choosing the fre-
quency of the external pulse to be resonant to this partic
transition. In this case, the system of four differential equ
tions ~24! splits into two independent~in some approxima-
tion! parts@6#. Each part consists of two coupled differenti
equations with only one term on the right-hand side,

iĊp~ t !5Vpmexp@ i ~Ep2Em!t2 i ~nt1w!#Cm~ t !,

iĊm~ t !5Vmpexp@2 i ~Ep2Em!t1 i ~nt1w!#Cp~ t !,
~25!

where we supposeEp.Em and the statesup& and um& are
related to each other by the flip of thel th spin with the
resonant (Ep2Em2n50) or near-resonant (Ep2Em2n
;J) transition frequency,Vpm52V l /2.

FIG. 2. A schematic illustration of a single node—a two-qu
system in an external permanent magnetic fieldBz and in a circu-
larly polarized radio frequency field.
0-4
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In the case where the system is initially in the stateum&,
i.e., whenCm(t0)51 and Cp(t0)50, the solution has the
form @6#

Cm~ t !5F cos~lpm
l t/2!1 i

Dpm

lpm
l

sin~lpm
l t/2!GexpS 2

i tDpm

2 D ,

Cp~ t !5 i
V l

lpm
l

sin~lpm
l t/2!expF i t 0Dpm1 i S tDpm

2
2w D G ,

~26!

wheret5t2t0 is the duration of the pulse,Dpm5Ep2Em

2n is the detuning from exact resonance,lpm
l

5AV l
21(Dpm)2 is the precession frequency ofl th qubit in

the frame rotating with the frequencyn. If the system is
initially in the stateup&, i.e., whenCp(t0)51 and Cm(t0)
50, the solution has the form@6#

Cp~ t !5F cos~lpm
l t/2!2 i

Dpm

lpm
l

sin~lpm
l t/2!GexpS i tDpm

2 D ,

Cp~ t !5 i
Vk

lpm
l

sin~lpm
l t/2!expF2 i t 0Dpm2 i S tDpm

2
2w D G .

~27!

Equation~27! can be derived from Eq.~26! by substituting
Cp→Cm , Cm→Cp , Dpm→2Dpm , w→2w.

In order to optimize the work of our computer we choo
the frequencies of the pulses, which realize the logic ope
tions in our computer to be resonant (Dpm50, lpm

l 5V l)
for the corresponding transitions. In this case, and under
condition V lt5p ~a p pulse!, Eq. ~26! describes the com
plete transition from the stateum& to the stateup&,

um&→ ie2 iwup&, ~28!

and Eq.~27! describes the complete transition from the st
up& to the stateum&,

up&→ ieiwum&. ~29!

One can see that thep pulse can be used for the swap o
eration between the statesup& and um&. The result of the
swap operation is independent of the phase of the wave f
tion.

If the duration of the pulse isV lt5p/2 ~a p/2 pulse!,
then according to Eq.~26! the stateup& transforms to the
superposition of the states,up& andum&, with equal probabili-
ties,

um&→
1

A2
~ um&1 ie2 iwup&), ~30!

and according to Eq.~27! the stateup& transforms to the
superposition
01231
a-

e

e

c-

up&→
1

A2
~ up&1 ieiwum&). ~31!

If the system before the pulse is in a superposition of
states,up& and um&, then in the general case thep/2 pulse
does not mix the states in equal proportions,uCp8u

25” (1/2)
3(uCpu21uCmu2) and uCm8 u25” (1/2)(uCpu21uCmu2). The
probabilities after ap/2 pulse are equal,

uCm8 u25uCp8u
25

1

2
~ uCpu21uCmu2!, ~32!

only when the wave function has a definite phase, for
ample, whenCp and Cm before the pulse are pure real o
pure imaginary. In the situation when before the pulse o
one level is populated,Cp50 or Cm50, Eq.~32! is satisfied
independently of the phase of the initial wave function.

V. PROTOCOL FOR REALIZATION OF THE COLLISION
OPERATOR

The energy levels for the system shown in Fig. 2 a
illustrated in Fig. 3. The action of the collision operatorÛ
results in mixing of the statesu01& andu10&. As follows from
the preceding section, mixing can be implemented by ap/2
pulse. However, since our Hamiltonian~23! provides only
one-spin-flip transitions, mixing cannot be implemented b
single pulse. Instead, we propose to use the protocol
consists of three pulses as shown in Fig. 4. The firstp pulse
@see Eqs.~28! and ~29!# of our protocol transfers the stat
u01& to the stateu11&, and the stateu11& to the stateu01&
~swaps the statesu01& andu11&). The secondp/2 pulse mixes
the statesu10& and u11&. The thirdp pulse again swaps th
statesu01& and u11&. In brief, using two additionalp pulses
we shift the swap operation shown in Fig. 3 to upper leve
so that it could be implemented in our Hamiltonian~23! that
provides only one-spin-flip transitions. From Fig. 4 one c

FIG. 3. A schematic illustration of the action of the collisio
operator. This operator mixes the statesu01& and u10& in equal pro-
portions, while only the phases of the statesu00& and u11& change.
0-5
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G. P. BERMAN, A. A. EZHOV, D. I. KAMENEV, AND J. YEPEZ PHYSICAL REVIEW A66, 012310 ~2002!
see that the statesu11& and u00& effectively remain un-
changed~they change only their phases!.

Now we discuss in detail the procedure outlined abov
Step I: Initialization. The first step is the initialization o

creation of the initial state with the probabilityr(t50,x).
The initial state of each node is supposed to be the gro
state. Physically, initialization of our system is the excitati
of each node from the ground state to the stateu01&. We
assume here that we can initialize each node independe
as might be possible with an array of micro-NMR coils@7#.
From Eq.~26! we have

r~x,t !5uC1~x,t !u25sin2@V1t~x,t !/2#, ~33!

where the initial profile att50 is r(x,0)5r0(x). The profile
of the probability distribution in our model is controlled b
the duration of the pulse,

V1t~x,t !52 arcsin@Ar~x,t !#, ~34!

wheret andx are the time and the coordinate in the diffusi
equation~7!.

Step II: Collision. After the initialization, thep pulse
transforms the stateu01& to the stateu11&, as shown in Fig. 4.
The secondp/2 pulse mixes the statesu10& and u11&. These
states are mixed in equal proportions, since before thep/2
pulse only the stateu11& is populated@and the stateu10& is
empty, see Eq.~32!#. The thirdp pulse swaps between th
statesu11& and u01&. The parameters of this pulse are t
same as the parameters of the first one. Using Eqs.~26! and
~27! one can present the evolution operatorÛ explicitly. It
has the form~17!. The matrix elements of the collision op
erator of the real physical system slightly differs from tho
in Eq. ~17! by the values of the orderV/dv due to the
nonresonant transitions~flips of nonresonant spins!. Since
the probabilities of the nonresonant transitions are very sm
@;(V/dv)2 @8##, the deviations of the matrix elements fro
those in Eq.~17! are small. The matrix elements of the exa
matrix Û in Eq. ~11! can be obtained by numerical integr
tion of the system of differential equations~24! ~see also Ref.

FIG. 4. The results of action of a sequence of pulses~the pro-
tocol! that realizes the collision operator. Each diagram indica
the action of one pulse. The whole protocol implements the op
tion shown in Fig. 3. The dashed lines indicates the near-reso
transitions that are suppressed by the 2pk method discussed in Sec
VI. The symbol^ means that the transformations follow after ea
other from the left to the right. The solid lines with arrows at bo
ends indicate mixing of the states in equal proportions. The s
lines with one arrow indicate the swap operation. Before the co
sion only the statesu00& and u01& are populated (C25C350).
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@8#!. In our numerical simulations presented below we us
the exact form of the collision operator calculated nume
cally. Since our system was initialized in one stateu01& ~but
not in the superposition of the statesu01&, u10&, and u11&),
our protocol is phase independent, i.e., it works for any i
tial phase of the pulses,w i .

Step III: Measurement and reinitialization. After measure-
ment we define a new distribution using Eq.~20!, at each
node. The reinitialization is the same procedure like the
tialization ~step I! but with the new probabilityr(x,t1T).
This step can also be implemented using an array of mic
NMR coils @7#. Note, that we assume that after each m
surement all nodes of our system relax to the ground sta

VI. PARAMETERS

Now we discuss the parameters of the pulses, which al
us to implement the collision operator. Since all pulses of
protocol are resonant, the frequency of the pulse used
~re!initialization ~the transitionu00&↔u01&) is @see Eq.~23!
for the values of the energiesEi#,

n05E12E05
1

2
~v12v21J!2

1

2
~2v12v22J!5v11J.

~35!

The frequency of the first pulse required for implementat
of the collision operator~the transitionu01&↔u11& in Fig. 4!
is

n15E32E15
1

2
~v11v22J!2

1

2
~v12v21J!5v22J.

~36!

The frequency of the second pulse~the transition
u10&↔u11&) is,

n25E32E15
1

2
~v11v22J!2

1

2
~2v11v21J!5v12J,

~37!

and the frequency of the third pulse is equal to the freque
of the first one,n35n1.

In order to suppress the probabilities of flips of nonres
nant spins we choosev22v1@J@V l , l 51,2 ~see Ref.
@8#!. In order to suppress the near-resonant transitions~illus-
trated in Fig. 4 by the dashed lines! for which uDu5J, we
apply the 2pk method@6#. As follows from Eqs.~26! and
~27! the probability of the near-resonant transitions genera
by the first or thirdp pulse is,

«25H V2

l2
sinFl2p

2V2
G J 2

, ~38!

where the superscript 2 indicates the number of the spl
52 ~see Fig. 2!, andl l5AV l

21J2. This probability is equal
to zero if l2p/(2V2)5pk, k51,2, . . . .This gives forV2
the following values:

V2
k5J/A4k221 ~k51,2, . . .!. ~39!

s
a-
nt

id
i-
0-6



m

ted

SIMULATION OF THE DIFFUSION EQUATION ON A . . . PHYSICAL REVIEW A66, 012310 ~2002!
FIG. 5. ~a! Dynamics of the profile,r(x,t),
and ~b! broadening of the dispersiond(t), simu-
lated using the quantum-mechanical syste
~filled circles! and the analytical solution of the
diffusion equation~solid lines! with the same pa-
rameters. The values of parameters are presen
in the text.
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If V25V2
k , the near-resonant transitions indicated in the

and the right diagrams in Fig. 4 are completely suppres
Using the same arguments for the secondp/2 pulse, we ob-
tain

V1
k85J/A16k8221. ~40!

The total time required to implement the collision opera
is,

T5
p

V2
k

1
p

2V1
k8

1
p

V2
k9

.

In our simulations we choosek5k9510 andk855, so the
values ofV are the same for all pulses (V'0.05). We also
used the sameV for initialization and reinitialization. We pu
all initial phases of all pulses@including that required for
~re!initialization# equal to zero,w i50, i 51,2,3, since our
protocol is completely insensitive to them.

VII. NUMERICAL SIMULATIONS

In our simulations, we assume thatT51, l 51, V, andv
are dimensionless, and are measured in units ofJ; dv
51000, v15dv, v252dv. We simulate a 1D diffu-
sion of the Gaussian wave packet, and compare the num
cal results with the analytic solution. The initial profile is

r~x,0!5
1

A2pd0
2

expS 2
x2

2d0
2D ,

whered0 is the width of the initial packet,2300,x,300.
The time evolution is given by the equation

r~x,t !5
1

A2pd2~ t !
expS 2

x2

2d2~ t !
D , ~41!

whered2(t)5d0
21Dt, D5 l 2/T51. In Figs. 5~a! and 5~b!
01231
ft
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we compare the profiler(t) and the dispersiond(t), ob-
tained by simulating the dynamics of our quantum
mechanical system with those given by the analytical so
tion ~36!. One can see that our model correctly simulates
diffusive behavior of the system.

VIII. CONCLUSION

We simulated a 1D diffusion equation in the system th
consists of quantum two-qubit nodes interconnected by
classical channels. The initialization and reinitialization a
simulated by a different sequence of the radio freque
pulses applied independently to each node of the 1D ch
The collision operator is simulated by a single pulse
quence applied to the entire bulk of the sample. In orde
realize the described protocol, the pulses should have
definite~resonant! frequencies, amplitudes~Rabi frequencies
V), and durations. All these parameters are discussed in
paper. The protocol is insensitive to the initial phases of
pulses. The 1D diffusion equation is the simplest equat
that describes the fluid dynamics. On the other hand, u
now there were no proposals for implementation of t
equation in the real type-II quantum computer using elec
magnetic pulses. Our results can be used to develop quan
protocols for simulations of quantum logic in more comp
cated systems, such as a 1D Burgers equation@9#, 2D diffu-
sion or 2D fluid dynamics.
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